Potential GlobSnow SE aggregation product

Rune Solberg Norwegian Computing Center

Outline

- Why an aggregation product?
- Examples from GlobSnow SE
- Aggregation scheme used so far in GlobSnow
- Other aggregation products
- The alternatives
- GlobSnow SE solution?

What should aggregated products be?

15 March 2004, 10 days sliding window

8 April 2004, 10 days sliding window

March 2004, Monthly aggregated product

Aggregation scheme used here

- Algorithm:
 - Go through the snow map time series data cube pixel by pixel in the time direction
 - For the output, choose the most recent clear sky observation
 - If there are no clear-sky observations for a time row, set output to 'cloud' (or 'water' or 'too dark')
- Pros:
 - The least cloud-covered snow map obtainable for the period
 - The most recent observations are shown
- Cons:
 - No snapshot in time, mixes observations within the aggregation period

NASA's 8-day snow cover product

- Algorithm:
 - Same as we apply, except that maximum FSC is chosen rather than most recent observation
- Pros:
 - The least cloud-covered snow
 map obtainable for the period
 - Shows a definite observed value (the maximum) rather than a 'random' with respect to observed value
- Cons:
 - No snapshot in time, mixes observations within the aggregation period

SPOT VEGETATION 10-day composite

Algorithm:

- Exact algorithm not known, but a best average (of reflectance) for ten days is made by a combination of observations and estimates
- Pros:
 - Cloud-free 'map'
- Cons:
 - Snow fraction is not retrieved; this is an image product
 - The use of estimated values is questionable concerning climate monitoring

What are our alternatives?

• Which variable to show from the time cube of data:

- The most recent observation?
- The maximum snow extent observed?
- The minimum snow extent observed?
- The average snow extent observed?
- Limitations:
 - Full coverage north of about 30° requires at least ten days of observations
 - Some variability in actual snow cover must be expected within such a time window during periods in the autumn and spring

Is supplemental data the solution?

- Number of snow observations in the period per pixel?
- Date of first snow observation in the period?
- Date of last snow observation in the period?
- All dates of actual snow observations?

The GlobSnow SE solution?

- Which variable to show from the time cube of data:
 - The average snow extent observed
 - Because it is most representative for the period
- Aggregation period:
 - ~10 days (could also be 15 days / 0.5 month):
 - Full coverage north of about 30° requires at least ten days of observations
 - 10 days cover most of the snow-covered part of the northern hemisphere
- Supplemental data:
 - Number of snow observations in the period per pixel
 - Day of first snow observation in the period
 - Day of last snow observation in the period

Also a monthly product?

- Which variable to show from the time cube of data:
 - The average snow extent observed
 - Because it is most representative for the period
- Aggregation period:
 - 1 month:
 - Full spatial coverage a few times
 - Very little cloud cover
- Supplemental data:
 - Number of snow observations in the period per pixel
 - Day of first snow observation in the period
 - Day of last snow observation in the period

User opinions?

 What are the actual user needs concerning an aggregated product?

