GlobSnow Workshop 1

- SCAmod method for Fractional Snow Cover mapping
- Areal extension of Forest transmissivity map

Sari Metsämäki Finnish Environment Institute

Fractional Snow Cover maps by SCAmod

- SCAmod method for Fractional Snow Cover mapping
 - Works for forested and non-forested areas -> provides the GlobSnow SE-product for most of the target area
 - Based on a reflectance model with three major reflectance contributors (snow, forest canopy, snowfree ground)
 - An average forest transmissivity must be known for each calculation unit area (estimated from EO-data using SYKE's model)
 - Method usable for a variety of optical instruments
 - No land cover data is needed (except water mask)

Fractional Snow Cover maps by SCAmod

SYKE *SCAmod*-method: examples of Fractional snow cover maps on April 2, 2004

Fractional Snow Cover maps by SCAmod

Apr29, 2006

Apr19, 2008

SYKE SCAmod-method: example of Fractional snow cover maps

Reflectance model

$$\rho(SCA) = (1 - t^{2}) * \rho_{forest}$$

$$+t^{2} \left[SCA * \rho_{snow} + (1 - SCA) * \rho_{ground}\right]$$

$$\downarrow$$

$$SCA_{i} = \frac{\frac{1}{\hat{t_{i}}^{2}} * \rho(SCA) + (1 - \frac{1}{\hat{t_{i}}^{2}}) * \rho_{forest} - \rho_{ground}}{\rho_{snow} - \rho_{ground}}$$

ho(SCA) ho_{snow} ho_{ground} ho_{forest} \hat{t} SCA observed reflectance from unit area reflectance for wet snow reflectance for snow-free ground reflectance for forest canopy forest canopy transmissivity for unit ar fraction of snow covered area

Forest transmissivity

Forest transmissivity map for 0.01°×0.01° grid: $\hat{t}^{2} = \frac{\rho(SCA = 100\%) - \rho_{forest}}{\rho_{snow} - \rho_{forest}}$

•How much the canopy blocks the two-way radiation

 Calculated for each cell using optical data at full dry snow cover conditions

 Nodata for areas without seasonal snow coverage

Validation data for Fractional Snow cover method *SCAmod* over Finland (boreal forest and tundra)

Three types of snowmaps to be validated

SYKE snow course network

•A snow course is a 2 to 4 km long trail through various terrains typical of the locality.

- •Each course measured once a month
- Measurements on *snow depth* along the trail at 40-80 locations, with information on land cover type.
- For *density*, the snow is weighed at 8 points along the snow course.
- The *fraction of snow-free ground* (patchiness) is visually estimated at each snow depth measurement point

Land cover types used in snow course measurement recording

1 open area

2 forest opening

3 forest, pine dominating

4 forest, spruce dominating

5 forest, deciduous dominating

6 open bog

Weather station observations by FMI

- The Finnish Meteorological Institute regularly produces several kinds of observations nearly from 500 locations around the country.
- The SE related measured parameters: state of ground (e-code) snow depth
 - Snow e-codeIndication9dry snow full cover7wet snow full cover6snow cover more than 50% but less than 100%5snow cover less than 50% but more than 0%4Open areas snow free, snow exists in forests30% snow cover
- Daily measurements over several decades

FSC validation against ground truth (snow courses)

FSC validation against ground truth (snow courses)

Validation against weather station data:

Data set	Reference data: e-codes											
SCAmod AATSR	Classes	0%		0% <fsc<5 0%</fsc<5 		50%≤FSC< 100%		FSC=100%		Total#	Commissio n errors	
		%	#	%	#	%	#	%	#		%	#
	FSC = 0%	97.2	2423	45.6	1830	0.1	2	0.0	0	4255	43.1	1832
	0% <fsc<50%< th=""><th>2.4</th><th>61</th><th>28.9</th><th>1159</th><th>10.0</th><th>238</th><th>1.9</th><th>110</th><th>1568</th><th>26.1</th><th>409</th></fsc<50%<>	2.4	61	28.9	1159	10.0	238	1.9	110	1568	26.1	409
	50%≤FSC<100%	0.3	8	16.3	653	43.6	1038	15.8	906	2605	60.2	1567
	FSC=100%	0.0	0	9.2	369	46.3	1103	82.3	4734	6206	23.7	1472
Total #			2492		4011		2381		5750	14634		
Omission		2.8	69	71.1	2852	56.4	1343	17.7	1016		36.1	

Total accuracy: 63.9%

Conclusions from validation

- SCAmod gives more accurate fsc-estimates than NASA product
- MODIS and AATSR give approximately same accuracy

- WHY?
 - Transmissivity generation with MODIS-imagery is time consuming
 - Cloud-free images required (and good cloud screening method)
 - Full snow cover conditions required
 - Usually several obervations per pixel is recommended to provide information for accuracy assessments
 - Using GlobCover-data provides faster way, even though less accurate

Generation of transmissivity using GlobCover data

- EO-derived transmissivity vs. GlobCover data over Baltic Sea Area
 - Statistics (Mean and standard deviation) for each GlobCover class

$$transmissivity_{i,j} = \sum_{c=1}^{Nclasses} \frac{n_{c,i,j}}{n_{tot,i,j}} * \frac{(1 - sd(t_c))}{(1 - \max(sd(t_{c,i,j})))} * mean(t_c)$$

*i,j*are grid cell coordinates (cell size $0.01^{\circ} \times 0.01^{\circ}$) $n_{c,i,j}$ is number of GlobCover pixels of class c in within grid cell $n_{tot,i,j}$ is total number of GlobCover ($0.0025^{\circ} \times 0.0025^{\circ}$) pixels within grid cell (=16) $sd(t_c)$ is standard deviation of transmissivity for class c $max(sd(t_{c,i,j}))$ is local maximum of standard deviation of transmissivity within the grid cell *i,j* $mean(t_c)$ is mean transmissivity for class c

N_{classes} is the number of GlobCover classes.

Comparison of the two transmissivities

FSC validation against ground truth

Pan-European transmissivity map Based on GlobCover (ESA) data

Transmissivity

- Bicheron, P., Huc, M., Henry, C., Bontemps, S., GLOBCOVER Product Description Manual, Issue 2, Rev. 2, 4/12/2008.
- Metsämäki, S., S. Anttila, M. Huttunen, J. Vepsäläinen, 2005. A feasible method for fractional snow cover mapping in boreal zone based on a reflectance model. *Remote Sensing of Environment*, Vol. 95 (1):77-95.

• The 1first version of GC-transmissivity map could not catch the very low transmissivities; the second version is improved (very dense Russian forests are now included in the statistical analysis)

