

#### **Toward Assimilation of Snow Data**

William Lahoz, wal@nilu.no

GlobSNOW Workshop Innsbruck, Austria, 12–13 January 2010





# Contents:

- •Importance of hydrological cycle (soil moisture, snow)
- Data assimilation (DA) idea & benefits
- •Observations input to DA
- Models input to DA
- Development of snow DA
- GlobSNOW contribution



### Importance of hydrological cycle:

 Accurate knowledge of spatial/temporal surface storages & fluxes:

•Address wide range of important issues (societal, economic, scientific)

•Improved estimates of land surface conditions:

•Agriculture, ecology, civil engineering, water resources management, rainfull/runoff prediction, atmospheric process studies, climate/weather prediction, disaster management

# The Water Cycle



From Wikipedia

Land Water Cycle features (based on information from Paul Houser, CREW)

Input - Output = Storage Change

-> Budget

Observe and predict:

Precipitation (solid, liquid) River runoff (discharge) Land Ice (e.g. high latitudes) Snow Cover (e.g. high latitudes, mountains) : GlobSNOW

#### **Boundary information:**

Temperature & Permafrost (e.g. tundra) Salinity Vegetation

Water Cycle: Moisture flux convergence Evolution of the ice mass (e.g. high latitudes, glaciers) Oceanic transports

#### DA idea and benefits



First SMOS data, Nov 2009 Non-calibrated brightness temperatures Blue (low) – Red (high)

Note observational gaps

Need a model to fill in gaps (e.g. linear interpolation)

•Observational & model information with errors

- •DA provides a way of combining this information in an objective way
  - e.g. variational methods, minimizing a penalty function -> analysis
- •DA adds value to observations: fills in gaps
- •DA adds value to models: keeps on track (constrains) using observations

Lahoz *et al.* (2010): *Data Assimilation and Information*, in "Data Assimilation: Making Sense of Observations", Springer, Eds. Lahoz, Khattatov, Ménard.



#### Observations:

•Input to DA: in situ, remote sensing (e.g. satellite)

Current state of the art of snow/water estimation
Satellite remote sensing retrievals:
e.g. AMSR-E, SMMR, SMOS

Snow Water Equivalent (SWE) difficult to measure Snow cover or extent common from VIS/IR remote sensing Snow depth can be easily measured Snow density useful for modelling & remote sensing

Note that scientists also use DA to produce analyses that can be treated as observations (common approach, e.g., reanalyses):

Land surface models incorporating data assimilation



Houser *et al.*, 2010,

Land Surface Data Assimilation,

- in "Data Assimilation: Making
- Sense of Observations", Springer

Eds. Lahoz, Khattatov, Ménard.

*Table 1:* Characteristics of hydrological observations potentially available within the next decade (see *Appendix A* for details of sensor acronyms).

| Hydrological<br>Quantity          | Remote<br>Sensing                | Time<br>Scale            | Spatial<br>Scale              | Accuracy<br>Considerations                                          | Examples of Sensors                    |
|-----------------------------------|----------------------------------|--------------------------|-------------------------------|---------------------------------------------------------------------|----------------------------------------|
|                                   | Technique<br>Thermal<br>infrared | Hourly<br>1day<br>15davs | 4km<br>1km<br>60m             | Tropical convective<br>clouds only                                  | GOES<br>MODIS, AVHRR<br>Landsat, ASTER |
| Precipitation                     | Passive<br>microwave             | 3hour                    | 10km                          | Land calibration<br>problems                                        | TRMM, SSMI,<br>AMSR-E, GPM             |
|                                   | Active<br>microwave              | Daily                    | 10m                           | Land calibration<br>problems                                        | TRMM, GPM                              |
| Surface soil<br>moisture          | Passive<br>microwave             | 1-3days                  | 25-50km                       | Limited to sparse<br>vegetation, low<br>topographic relief          | AMSR-E, SMOS,<br>SMAP                  |
|                                   | Active<br>microwave              | 3days<br>30days          | 3km<br>10m                    | Significant noise from<br>vegetation and roughness                  | ERS, JERS, RadarSat                    |
| Surface skin<br>temperature       | Thermal<br>infrared              | 1hour<br>1day            | 4km<br>1km                    | Soil/vegetation average,<br>cloud contamination                     | GOES<br>MODIS, AVHRR                   |
| Snow cover                        | Visible/<br>thermal<br>infrared  | 1hour<br>1day<br>15days  | 4km<br>500m-<br>1km<br>30-60m | Cloud contamination,<br>vegetation masking,<br>bright soil problems | GOES<br>MODIS, AVHRR<br>Landsat, ASTER |
| Snow water<br>equivalent          | Passive<br>microwave             | 1-3days                  | 10km                          | Limited depth<br>penetration                                        | AMSR-E                                 |
|                                   | Active<br>microwave              | 30days                   | 100m                          | Limited spatial coverage                                            | SnoSat, SCLP,<br>Cryosat-2             |
| Water level/<br>velocity          | Laser                            | Todays                   | 100m                          | problems                                                            | SWOT, DESDynI                          |
| Total water<br>storage<br>changes | Radar<br>Gravity<br>changes      | 30days<br>30days         | 1km<br>1000km                 | Limited to large rivers<br>Bulk water storage<br>change             | GRACE, GOCS,<br>GRACEII                |
| Evaporation                       | Thermal<br>infrared              | 1hour<br>1day<br>15days  | 4km<br>1km<br>60m             | Significant assumptions                                             | GOES<br>MODIS, AVHRR<br>Landsat, ASTER |



#### Difficulties with snow retrievals

•Snow is a highly variable medium

- Large vertical variability
- •Large horizontal variability (subpixel heterogeneity)

•Snow radiance modelling one of hardest microwave problems

- •Snow is a dense electromagnetic (EM) medium
- •Capturing layering is critical
- •EM signature highly sensitive to grain size (highly variable)
- •Sparse in situ measurements
- •Density can increase 2-50 kg/m3/day
- •Ablation:  $\frac{1}{2}$  of Artic snowpack can ablate over a winter



# Models:

- Input to DA: land surface models (LSMs)
- •These could be off-line or coupled (e.g. atmosphere model)
- •Examples of state-of-the-art models:

•SURFEX (Météo-France, HIRLAM)

•JULES (UK MetO)



#### **NWP model domains: spatial resolution**





#### Uncertainties in numerical modelling

#### (1) Model structure

- Parametrizations
- Putting model components together
- Numerical methods
- (2) Model forcing
  - Spatial & temporal structure
- (3) Parameter data
  - Soils & vegetation (type & distribution)
- (4) Initial conditions
  - Influences trajectory (cf. Forecasting)





Issues with snow in models

Results from work at Met.no and other groups in HIRLAM

•Strong sensitivity to snow in temperature forecasts from NWP models: negative bias in temperature when snow present

•Current snow models have snow on ground too long in melting season (e.g. in valleys)

•Need for more realistic snow schemes: design of parametrizations, incl. dependencies: e.g. fractional snow cover from snow water equivalent, SWE



#### Potential improvements

There are several snow schemes (e.g. associated with SURFEX model)

•Snow analysis

- •Tuning of OI (optimal interpolation) scheme
- •Observations from synop stations
- •Satellite data
- More advanced analysis methods
- More realistic snow schemes
  - •"Newsnow" in HIRLAM

•Developed in SURFEX (HIRLAM) and JULES (UK MetO)



#### Snow assimilation:

- •Role of assimilation (e.g. snow):
  - Initial state (forecasting)
  - •Monitoring (e.g. elements of hydrological cycle)
  - •Evaluation of observations/models

•Accurate prediction of snowpack status important for environmental applications, but model estimates typically poor & *in situ* measurement coverage inadequate

•Remote sensing estimates spatially & temporally limited due to complicating effects: incl. distance to open water, presence of wet snow & presence of thick snow

•DA of remote sensing estimates into a land surface model (LSM) can capitalize on the strengths of both approaches (model + observations)

•To achieve this, reliable estimates of uncertainty in both remotely sensed & model simulated quantities (SWE) critical

## ournilurwww



#### Snow quantities to assimilate

- •Volume
  - •Station SWE
  - •Station depth
  - Station SWE/depth

- •Area
  - •Binary snow presence
  - •Fractional unmixing
- •Gravity anomaly











DA Added value: Comparison of the median SWE for pixels including 5 or more stations; ground observations (black dots), SMMR observations (+ symbols), model forecast (dash lines), model forecast with DA run-I (dotted lines) and run-II (solid lines) from: a) Jan-Mar 1979 (left panel), and b) Jul 1986 - Jun 1987 (zoomed to winter months from Oct 1986 to Apr 1987 - right panel). Vertical lines show plus one & minus one standard deviation from median of ground observations.

Run-I: Assimilate all SMMR observations; Run-II: Assimilate QC SSMR observations

Houser *et al.*, 2010, *Land Surface Data Assimilation*, in "Data Assimilation: Making Sense of Observations", Springer, Eds. Lahoz, Khattatov, Ménard.



#### Applications of assimilation of hydrological quantities

•Hydrology: fluxes, volume forecast, flood forecasting, reservoir operations, water allocation

•NWP: Initial state, short-term predictions, better use of EO data, improved models

•Climate: Initial state, medium/seasonal predictions, improved models

•NWP/climate parameters: albedo, energy sink, soil moisture, soil insulation



# GlobSNOW contribution:

- •GlobSNOW contribution (SWE, SE)
- •Observations (network) & access
- Resolution: spatial/temporal? (Houser et al. 2010)
- •Discussion between observations/modelling communities
- •Way forward: information exchange (multi-disciplinary approach)

•Build on land data assimilation work (e.g. Météo-France, Met.no, NILU, HIRLAM; ISSI International Team) with SURFEX and state-of-the-art land DA algorithms - special features of land DA (non-Gaussianity, non-linearity)



# Lahoz et al., 2010, The NILU SURFEX-EnKF land data assimilation system. NILU publication, January 2010.



Superficial volumetric water content (m<sup>3</sup>/m<sup>3</sup>), analysed 4 times, 0006, 1200, 1800, 2400 UTC

1 July 2006; left EKF; right square root EnKF (mean of 5 ensemble members)

#### Strategic issues (from the standpoint of Arctic Land Hydrology) - from Paul Houser

- What processes are most critical, and how can observational base best be improved?
- *Rivers* major rivers reasonably well gauged (notwithstanding budget pressures & complications of estimating discharge during ice breakup, etc) however "interior" gauge network sparse & under continuing pressure, generally number of Arctic gauges has declined over land ~20 years. Possible role of swath altimetry (complications include ice cover, overpass interval)

• *Snow on ground* - some *in situ* measurements, but vast area - remote sensing offers promise, & some success already with passive microwave sensors (most algorithms use 19/37 GHz channels). Complications include mixed pixels (esp. forest), & topography, among others.

• *Evapotranspiration* - usually by difference, possibility for indirect inference and measurement of key variables (Ts, vegetation indicators) via remote sensing

• *Precipitation* - role of GPM (Global Precipitation Measurement)? Sampling issues? Strategies for data assimilation?

• Need to move towards *advanced process models*, assimilation methods, and validation.

• Need to move *toward integrated science assessments* (i.e. putting the water cycle pieces together), & interdisciplinary big-picture teamwork

-> Role for GlobSNOW: observational database; interaction with models, Land DA